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Array enhancement of stochastic synchronization and signal-to-noise ratio gain
in the nonlinear regime of signal transmission
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The nonlinear transformation of an external noisy signal by an array of noninteracting elements with internal
noise is considered. The array simulates a neuronal system that processes spike trains. It is shown that

increasing the number of array elements entails significant extending of the stochastic synchronization region
and improvement of the signal-to-noise ratio (SNR). The effects are demonstrated for arrays of triggers,
overdamped bistable oscillators, and Fitzhugh-Nagumo systems. The interrelation between SNR improvement
and the efficiency of information processing is discussed.
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I. INTRODUCTION

The interplay between noise and the nonlinearity of a sys-
tem can produce nontrivial effects that lead to enhancement
of the system response. A remarkable example of this is sig-
nal processing by a threshold element, when any subthresh-
old signals cannot be detected without an additional noise
component, and by tuning noise intensity one is able to op-
timize the detection. This example is a manifestation of a
more general phenomenon called stochastic resonance (SR)
[1,2]. Initially, the essential ingredients providing SR effect
have included a bistable system, a periodic signal, and white
noise [3,4], but later they were significantly extended [1,2],
and it has been shown that for a wide range of situations,
noise is able to optimize the system response.

Unflagging interest in SR can be explained by the variety
of possible combinations of system nonlinearity and signal
and noise properties. Another important factor is the rel-
evance of SR to biological processes, especially to neuro-
science [5], where fluctuations persist from the molecular
level (e.g., ion channels) to networks. This factor induces the
study of information transformation via complex networks of
elements with external and internal noise sources [5]. It has
been shown that a network (or an array of elements) en-
hances significantly the system response in comparison with
a single element [6-9]. The conclusion is valid for a variety
of array configurations with or without coupling of elements,
with different types of local and global couplings. In the
neuroscience context, a parallel array of nonlinear elements
with a summing center attracts a lot of attention [10-14]. Tt
has been shown that internal noise in such a parallel array
leads to the optimization of information transmission in a
wide range of noise intensity. This optimization can be ex-
plained by noise-induced linearization of the nonlinear re-
sponses of individual elements [14,15] and, consequently, the
array response can be described in the framework of linear
response theory [15].

In this paper we consider a nonlinear regime of a parallel
array with summing and nonlinear end elements. The array
encodes an input signal into a sequence of switching events
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(spikes) [16], and the informational component of the input
signal has the same structure as the output of the array. The
nonlinear regime in the system is realized when the ampli-
tude of the signal is large enough. Within the nonlinear re-
gime, many different effects, for example, the generation of
higher harmonics [17], can be observed. We concentrate our
attention on stochastic synchronization [19] and signal-to-
noise-ratio (SNR) improvement [20,21].

The effect of stochastic synchronization is an important
one from the signal processing point of view. Synchroniza-
tion occurs when noise-induced switchings between system’s
states follow the phase of the external signal, and it is ob-
served in the range of noise intensity [18,19,22-25]. In [26],
it has been shown that switching synchronization can be re-
alized for a random spike train, i.e., noise induces switching
for each spike. An experimental study of stochastic synchro-
nization in a biological system has been done in [27]. This
phenomenon is important for understanding signal process-
ing in the neuronal system, since it specifies the conditions
when noise induces a regime of complete (optimal) informa-
tion transmission by spikes, and it is observed simulta-
neously over a wide range of noise amplitude.

In [18] an extensive analysis of stochastic synchronization
in an array of threshold elements in the limit of a weak signal
has been presented. The transformation of the signal with a
finite input SNR by an array with elements perturbed by
independent noise sources was analyzed using linear re-
sponse theory. The finite input SNR means that the external
signal consists of informational and noise components,
whereas internal noise sources do not relate to the external
noise. It is shown [18] that in the case of infinite input SNR
(informational component only), synchronization can be ob-
served for an arbitrary intensity of internal noise by increas-
ing the number of array elements. In turn, the finite input
SNR leads to a limitation on the maximal intensity of inter-
nal noise, and starting with a certain value of input SNR
(intensity of the noise component) the synchronization does
not occur. The main result of work [18] consists of the fol-
lowing. A large number of uncoupled elements perturbed by
independent noise sources tends to “remove” the nonlinearity
of each element, and the independence of noise sources “re-
moves” output noise during summing. As a result, with in-
creasing the number of elements, the array’s response tends
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FIG. 1. Configuration of the considered array of elements.

to be linear and noise-free, i.e., it repeats the shape of the
input signal. Consequently, synchronization between input
and output signals is observed. In the present paper the re-
gime is fundamentally nonlinear, so for a large amplitude of
input signal the described linearization does not occur, but
the synchronization can still take place since a larger signal
modulates strongly noise-induced switchings, for example,
reaching the threshold of the excitable element is possible for
a specific range of signal phase only (see [19,24,25,28] for
details).

SNR improving (gain) was observed experimentally in a
number of systems [20,21,29] and corresponding theoretical
support of the experimental results has also been provided
later [30]. The gain means that the output value of SNR
exceeds the input value [30]. In [21,31], SNR gain in con-
nection with switching statistics has been discussed. Re-
cently, Cubero er al. [32] have numerically shown that an
array of coupled nonlinear elements is able to increase sig-
nificantly SNR gain in comparison with a linear array.1 Note
that the presence of SNR gain is usually interpreted as an
enhancement of signal transmission, so we further discuss
the inter-relation between SNR gain and the efficiency of
signal processing.

The configuration of the considered array is shown in Fig.
1. The main difference from previously discussed configura-
tions [10-14,18] is the presence of the last (end) nonlinear
element, T, following after a summing center . The non-
linear element T is characterized by the same nonlinearity as
the base element, T;. This modification leads to the configu-
ration used for neuronal networks in the visual system [5]
and corresponds to the cascade model of the neuron [33]. In
this case input information is encoded by the output spike
train (a sequence of switchings), but not by the shape of the
input signal [10-13]. In previous investigations [10-14,18],
arrays of both bistable and excitable elements have been con-
sidered. In fact, both types of elements are used as a base
element of neuronal networks [5,34]. Therefore we consider
both of them in order to analyze the role of the base el-
ement’s dynamics. In Sec. II we investigate arrays of two
bistable units: Schmitt triggers and bistable overdamped os-
cillators. An array of excitable elements is discussed in Sec.
III. The conclusions drawn are summarized in Sec. I'V. Tech-
nical details of numerical simulations are presented in the
Appendix.

'We have to note that some previously reported results of SNR
gain in arrays raised some questions (see Ref. [31] for details).
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II. BISTABLE ARRAY

Let us, first, consider the Schmitt trigger as a base ele-
ment. The trigger is the simplest nondynamical bistable sys-
tem with a pure two-state dynamics defined by its hysteresis
loop. In the case of a symmetric loop, the trigger’s dynamics
is described by the following equation:

U(t) = Uy sign[AU - F(1)],

F(t) =F(1) + &.(1) + £(1); (1)

here F(¢) is an input signal; “sign” is the sign function; AU
=|AU|sign[U(t)] are the trigger’s thresholds; the output value
U(r) is equal to either positive or negative Uy, i.e., U(z)
==+ U,, and it is controlled by the signal F(7), i.e., if F(r)
>|AU|, the trigger is in its upper state +U,, and if F()
<—|AU]|, then it is in the state —Uj,.

The input signal F(¢) consists of three components. The
informational component F,(¢) is a periodic sequence of rect-
angular pulses with frequency f=1/T (or angular frequency
Q=27/T) and amplitude A: F(1)=(-1)"WA, where m(r)
=[2t/T), |x]=max{ n € Z|n=<x} is the floor function of x. The
amplitude A is comparable with, but less than, the threshold
value, i.e., the informational component is a subthreshold
one and cannot be detected without some additional compo-
nents. The second component is common noise &,(f), super-
imposed on pulses F,(r). The third component is internal ad-
ditive noise &(¢) acting independently in each element. Note
that a three-component input was used in [18], whereas in
most cases [10-14,32], the common noise, (), is not con-
sidered. Both noises are modeled as twice low-pass filtered
Gaussian white noise 7(z) (see [35] for details) with identical
cutoff frequencies, 1/7=100, for both filters:

21 D
s+—§+;§=‘—n<t>. 2)
T T

The intensities of the white noise sources are D,. for common
noise and D for the internal noise sources. If D.# 0, then a
signal with a finite SNR acts on each element.

The sum of trigger outputs S(t)=2§v Ui(f) acts on trigger
T,, which in turn produces the output of the considered array
U, Our aim is to consider the array performance as a func-
tion of the intensity D of internal noise. To this aim, two
measures are discussed: The mean switching rate (MSR), (f),
(or angular frequency (w)=2m(f)) and SNR, R. The MSR is
calculated as the mean number of switchings during the cal-
culation time. Alternatively, one can use a signal processing
measure like the receiver operating characteristic [8,36] or
the total error, as applied in neuroscience [37] (see below).
Since we consider the regime of synchronization in the sys-
tem with two symmetric thresholds, the use of MSR is suf-
ficient to characterize a signal transmission via the bistable
array.

The SNR is defined by analogy with the conventional
definition, used for a harmonic signal in a noisy linear sys-
tem, as the common logarithm of the ratio between the
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weight of the 6 peak, S, in the power spectrum at the pulse
repetition frequency (), to the intensity of the noisy back-
ground, S, at the same frequency [30]:

54
S,(Q)

and it is measured in units of decibels (dB). The definition is
based on the fact [30,31,38,39] that the output of a periodi-
cally forced system is a superposition of periodic and noisy
components.

Let us consider the dynamics of the array in the absence
of common noise &,.(z), i.e., D.=0. The population dynamics
of the single element n', (¢) are defined by the probability that
the i-element is in one of the states +U, or —U,. The rate
equations for populations n.(¢) have the forms [40,41]

R=101og, (3)

n,=—-rn,+rmn_,

n_=—rm_+rn,, (4)

where r..(¢) are the threshold crossing rates. For the trigger,
the rates are [35]

[+A] —Fi(t)]27>

(1) 1 (
() = —exp| -
& 2T xP D

(5)
Note that using expression (5) has provided good correspon-
dence between theoretical and experimental results (see [25]
for details). In Ref. [30], it has been demonstrated that in the
case of periodic pulses, the long-time solution of Eq. (4) has
the form

(6)

n+(t)=—%+M[l+A

=m0 T2]
2A

" R

where y=r,(0)+r_(0), Ar=[r_(0)-r,(0)]/y. Expression (6)
specifies a periodic function, i.e., n,(f)=n,(t+7) for any . In
the regime when the switching rate is comparable with the
frequency f, the last term in the brackets is practically con-
stant, and the time dependence of the population coincides
with the input signal F(¢), i.e., it is a rectangular shaped

function with some maximal n}"* and minimal values n}™"
(note that ny™=1-n™" and n""=1-n""). In the synchro-

max min

nization regime, n." is close to the unit value, whereas n’}
is close to zero: ni™>1-¢, nﬁi“<e, max, r.(f) > f, e 1.
In other words, the difference An"=n""—p™">1-2¢ is
close to the unit value.

The input of the end element 7 is the sum of outputs
S(t)=2§v Ui(¢), and S(7) is a random discrete-value variable
distributed accordingly to the time-dependent Bernoulli law:

PLS()] =Y (0[1 = n () ]*, (7

where j=0.5(S-N) and j=0,1,2,...,N, CY=N!/[j!(N
—j)!] are binomial coefficients, and n,(r) is the time depen-
dent population of the i element. The discrete-value signal
S(r) can be approximated by a continuous signal with a nor-
mal distribution [42], which is defined by a time dependent
mean value wu(f)=N[2n,(1)—=1] and a variance o>(¢)
=2Nn,(t)[1-n,(r)]. Dynamics of the mean value wu(r) is de-
termined by the population dynamics n,(f) and consequently
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it is a periodic function of time and repeats the shape of
n,(7). So, in the synchronization regime u(f) is a rectangular
shape function with some maximal and minimal values = u™
and a very narrow switching region in the case max, r.(r)
>f. If w™ is larger than the threshold |AU| and it is larger
than 40, then the input of 7, is suprathreshold and the
switching process is a practically deterministic one and con-
trolled by F,(1), i.e., {(w)={). It means that the regime of
synchronization is realized. The condition =40 can be con-
sidered as the right-hand (in respect to maximal noise inten-
sity) synchronization boundary and leads to the following
relation for the populations n. to observe synchronization:

. [ 1
An™ = nr;lax _ nr}:nn > Vil (8)

In other words, synchronization can be observed for any ar-
bitrary small difference between populations by increasing
the number of array elements. It means that by using the
array we are able to extend the synchronization region in the
noise intensity domain up to any arbitrary value.

The presence of common noise &,(¢) leads to an additional
[in respect to F;(r)] noise-induced correlation of switchings
of array elements. Consequently, the last expression and the
conclusion should be modified, but, at least, the effect of the
enhancement of the synchronization region should still exist.
Results of numerical simulations of the triggers array are
presented in Fig. 2 for two different combinations of signal
amplitude A and noise intensity D.. The extension of the
synchronization region is clearly demonstrated by increasing
the number of elements. The output SNR, R, can exceed both
the input SNR of the array [dashed lines in Figs. 2(b) and
2(d)], when internal noise is not taken into account, D=0,
and the input SNR of an individual element [solid lines in
Figs. 2(b) and 2(d)], when internal noise is taken into con-
sideration, D #0. This SNR gain is a nontrivial nonlinear
effect, since by tuning internal noise only, one is able to
improve the SNR of an external noisy signal. Note that the
recently reported SNR gain by Cubero er al. [32] has been
demonstrated when noise in the external signal is absent, i.e.,
without common noise D_.=0.

It is clear (Fig. 2) that there is no direct relation between
the synchronization and SNR gain, since the gain is observed
when there is no synchronization ({w)# (). So it is prob-
lematic to use SNR as an indicator of the efficiency of infor-
mation transmission by spike trains.

The role of common noise is illustrated in Fig. 3. The
noise leads to a decrease in the synchronization region. Note
that for D.=0 the right-hand boundary of the synchroniza-
tion region can be estimated by the calculation of the MSR
using the following expression:

tanh(y7/4) ) ] ©)

(wy=0) +2777/4[1 - Ar2<1 -4
vT

where y=r_(0)+r_(0), Ar=[r_(0)-r,.(0)]/ 7y, and the cross-
ing rates are defined by the expressions
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FIG. 2. (Color online) Results of simulations for array of
Schmitt triggers. Angular MSR (w) [(a) and (c)] and SNR R [(b)
and (d)] are shown as functions of internal noise intensity D. The
parameters are (1=0.01, 7=1/100, Uy=1, and |AU|=0.1 for all
simulations. (a) and (b) correspond to the parameters values: A
=0.06 and D.=0.000 01; (c) and (d) correspond to A=0.025 and
D.=0.000 007. In (a) and (c) markers V (blue lines), [] (green
lines), and O (red lines) correspond to an array of N=1, 50, and 500
elements, respectively. Input SNRs are shown by dashed (magenta)
lines (without internal noise, D=0) and by solid (black) lines (with
internal noise, D # 0) in (b) and (d). Output SNRs of the array are
shown by different markers in (b) and (d).

n _ 2
1 (_[_lAUl mon»r)’ )

O T T )

where w(0)=N[2n,(0)=1] and ¢?(0)=2Nn,(0)[1-n,(0)],
and they depend on the number N of array elements. The
expression (9) is valid only for (w)=(); the first term in Eq.
(9) reflects the fact that w(0) > AU, whereas the second term
is identical to the expression (70) derived in [40]. The cor-
respondence between numerical results and curves defined
by Eq. (9) becomes visible with increasing N, since the error
of approximation of the Bernoulli distribution (7) by the con-
tinuous normal distribution decreases.

Now let us demonstrate that the effect of synchronization
enhancement is observed for arrays with another basic ele-
ment. In Fig. 4, the simulation results for bistable over-
damped oscillators are shown. In this case, the output x(z) of
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FIG. 3. (Color online) Angular MSRs are shown as functions of
internal noise intensity D for different values of common noise
intensity: Line 1 (red) D=0, line 2 (green) D.=0.000 01, and line
3 (blue) D,=0.000 02. The dashed lines correspond to theoretical
curves, calculated using expression (9). (a) and (b) correspond to an
array with N=500 and 50, respectively. Other parameters are speci-
fied in the caption of Fig. 2.

each element of the array is defined by the following equa-
tion:

i-x+x =F(1). (11)

The summing element was modified in comparison with the
trigger case by using the limitation of amplitude of signal
which acts on the end element: S(t)=sinh[7=)U(1)], U’
=x/(1). To model both internal &(f) and common £.(¢) noise
sources, color noise &(f) was used with correlation time 7
=1/100:

FIG. 4. (Color online) Results of simulations for an array of
overdamped bistable oscillators. Angular MSR (w) (a) and SNR R
(b) are shown as functions of internal noise intensity D. The param-
eters are 1=0.01, 7=1/100, A=0.2, and D,=0.02. Markers V (blue
lines) and O (red lines) correspond to an array of N=1 and 50
elements, respectively. In (b) input SNRs are shown by the dashed
(magenta) line (without internal noise, D=0) and the solid (black)
line (with internal noise, D#0); output SNRs are shown by
markers.
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.1 \2p
E+—E= (), (12)
T T

where () is white Gaussian noise. Results (Fig. 4) demon-
strate both synchronization enhancement and SNR gain in
the array of bistable oscillators.

III. EXCITABLE ARRAY

Finally, we checked the presence of effects in an array of
excitable elements that have been modeled by the Fitzhugh-
Nagumo (FHN) system. The output U'=u(f) of each excit-
able element obeys the equations

v=¢eu+a-F(1], (13)

where u and v represent the membrane potential and slow
recovery of a neuron, respectively; €< 1 and a are param-
eters. Noise sources &,.(¢) and &(r) correspond to color noise
(12) with 7=1/100. The input information signal F,(r) is
modified to be close to the output of the FHN system. F(z) is
a sequence of pulses with period T, amplitude A [Fy(z) is
varying between 0 and —A], and pulse ratio 7 (for an array of
triggers and bistable oscillators the pulse ratio is equal to 2).
The summing element produces the output signal in the form

N
S(t) = = 0.1[sinh(7>, Ui(t) + ug) + 1],

i=1

where Ui(t)=u'(t). The signal S(f) is limited to the range
[0:-0.2] similar to the signal F;(z). The parameter u, defines
the zero level of the sum of the output signals. Such a con-
figuration with the summing element X having the limitation
of an output amplitude and variable mean level reflects the
dynamics of the membrane potential of neurons [33].

Since the stationary state of the FHN system (13) corre-
sponds to u=-a, then the uy=—aN/2 defines a symmetrical
output signal S(7). The signal S(7) acts on the end element T
modeled by the FHN system too. The threshold value of
signal amplitude is A=0.1 for given 7=20007. Results of
the simulations for N=50 and different values of parameter
u, are presented in Fig. 5. Note that the array of FHN sys-
tems differs from the triggers and bistable oscillators consid-
ered above since the FHN system has only one threshold.

In general, the results (Fig. 5) support the conclusion de-
rived from the analysis of triggers and bistable oscillators
arrays. However, some differences can be seen. First, the
synchronization regime does not occur in one element,
whereas an array is able to induce synchronization. Second,
parameter i changes significantly the behavior of MSR (w)
and it is difficult to estimate the efficiency of signal process-
ing by using MSR only because of the presence of only one
threshold. Therefore the total error Q for pulse detection [37]
was also calculated:
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FIG. 5. (Color online) Results of simulations for FHN systems.
Angular MSR (w) (a), SNR R (b), and the total error Q (c) are
shown as functions of internal noise intensity D. The parameters are
0=0.001, 7=1/100, €=0.001, a=1.1, A=0.05, D.=0.002, and N
=50. The solid (black) lines correspond to the output of one ele-
ment. Markers correspond to an array (N=>50) with different values
of uy: ¢ (magenta lines) uy=20, [] (green lines) uy=27.5, O (red
lines) ug=40, and V (blue lines) uy=45. In (b) input SNRs are
shown by the dashed (magenta) line (without internal noise, D=0)
and by markers X (black line) (with internal noise, D # 0).

0=p,+2, (14)
n
where P,,=1-P,./n is the fraction of missed pulses, P, is the
number of correctly detected pulses, and » is the total num-
ber of pulses; P, is the number of false positive events, i.e.,
incorrectly detected pulses. We consider that the pulse is be-
ing correctly detected if it follows an input spike. We used
the time interval 2AT [here AT is the pulse duration of signal
F;(t)] after the beginning of the input pulse as the time inter-
val of correct detection.

The total error Q for different values of u, is shown in
Fig. 5(c). The use of an array can provide error-free signal
transmission, and parameter u is an additional one that can
be used for transmission optimization. For example, if an
array is able to estimate the intensity D of internal noises,
then by changing u, the synchronization region can be sig-
nificantly increased [one can start with uy=45 and switch to
uy=27.5 for D>0.1, see Fig. 5(c)].

IV. CONCLUSIONS

Summarizing, it has been demonstrated that the nonlinear
regime of signal transformation can be optimized for signal
processing. Extension of the synchronization region by in-
creasing the size of bistable systems array (triggers and
bistable oscillators) has been observed. Array inducing syn-
chronization in the case of excitable systems has been dem-
onstrated. It has been shown theoretically that in the absence
of common noise, i.e., a noise-free input signal, the synchro-
nization region can be arbitrarily extended by increasing the
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number of bistable elements. The synchronization region de-
creases with an increase of the intensity of common noise.
Also, array induced SNR gain has been demonstrated. For all
considered cases the output value of R exceeds its input
value in a certain range of internal noise intensity. It has been
shown that the presence of the gain does not unambiguously
mean an optimal signal transmission. The analysis has re-
vealed some differences between bistable and excitable dy-
namics and showed evidence that the use of an array leads to
a significant decrease of error transmission in comparison
with a single system. Let us stress that all results were ob-
tained for an array of uncoupled elements. It is reasonable to
expect the extension of the results to arrays with couplings
between elements, although differences might also appear.
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APPENDIX

For completeness, here we provide details of numerical
simulations of the Langevin equations (2) and (11)—(13), and
calculations of spectra and MSR (w). The equations were
presented in the normal form as a set of one-dimensional
differential equations:

Xi=Z{(x) + oimi(0), (A1)

where x(7) is the vector of dynamical variables, Z; represents
the deterministic parts of the equations, 7,(¢) is a white noise
source with (7(¢))=0 and {7(r) 5(s))=8(t—s), and o; is noise
amplitude. In the numerical simulations the Heun integration
scheme was used as follows [43]:

)?i(tjﬂ) = xi(tj) + I’ZZZ[X([,)] + o-i\“’%Gi(tj)’

h
xi(tj1) = x(t;) + E{Zi[x(tj)] +Z[X(t;) ]} + O'i\“%Gi(tj)’
(A2)

where 7 is the time step, #;,=t;+h, and G(t;) are the Gauss-
ian (normal) random numbers with zero mean and unit dis-
persion (if o; was equal to zero then the corresponding sto-
chastic term was excluded from the equation). The Box-
Muller algorithm [44] was used to generate Gi(t;). An
independent random number generator with an independent
initialization was used for each noise source 7,(¢). The time
step was chosen as h=T/2", where T is the period of the
pulses sequence and n is an integer number. The following
values of n were used: n=17 for bistable arrays of triggers
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and overdamped bistable oscillators, and n=21 for an array
of FHN systems.
The difference scheme used for Eq. (1) is given by

U(t;1) = U sign[|AUsign[U(t)] - F(1)].  (A3)

The power spectrum P(w) was calculated by the peri-
odogram method with a rectangular time window, and the
signal amplitude spectrum X(w) was calculated by the base-2
fast Fourier transform: P(wj)=(§)EkN=lX,%(wj), where N
=200 is the number of periodograms. Each periodogram was
calculated from random initial conditions after skipping a
relaxation time. The length of the periodogram was equal to
L=65 536 points and the time sampling interval was At
=2"h, where m is an integer (m=6 for arrays of triggers and
bistable overdamped oscillators and m=10 for the array of
FHN systems). These choices of the sampling interval Az and
time step h=7/2" provide the absence of the leakage effect
for a periodic signal of frequency (=2/T, i.e., one fre-
quency bin Aw contains all the power of signal harmonics
w=I1Q, where [=1,2.... To avoid aliasing, a low-frequency
linear filter with cutoff frequency a=m/(2Ar) was used of
the form

Xp=—ax;+ ax. (A4)

The filter output x/(¢) was used for the spectrum calculation,
whereas x(7) corresponds to the considered signals. These
can be the output of an array unit U(¢), the output of array
U, (1), or the input signal F,(r)+&.(r)+&(r) with or Fi(z)
+&.(r) without internal noise.

As follows from [38,39], the output signals U'(f) and
U,,t) consist of periodic and noisy components. The peri-
odic component corresponds to the informational signal F,(z)
and contains discrete constituents P(kQ)=S,8w—k(),
where k is an integer number, i.e., it contains harmonics of
frequency (). The spectrum calculation methods described
above define the weight of & peak on the frequency () as
S{(Q)=P(Q).

Following [1,2,30] the noise component S,({)) was esti-
mated using the power spectrum P({) ) in the following way:

J=i+l

S(Q)=ho—[ 2 Pw)],

JRimlj#i

(AS)

where Aw=2m7/(LAt) is the frequency resolution in the nu-
merically calculated power spectrum P(w;); w;={) and /=6
define a bandwidth to approximate the noise background at
signal frequency ().

Note that the input R allows verification of the results of
numerical simulations, since the input R for a periodic se-
quence of rectangular pulses F;(¢) can be calculated directly
as

2

R=10log;y—————.
815D+ D)Aw

(A6)
For the parameters given above the error of SNR calculations
is less than 1 dB, i.e., it is comparable with the size of the
markers in the figures.
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For the calculation of MSR (w), time intervals At;=t;
—1;_; between two successive transitions from the given state
to another state (for bistable arrays) and between two succes-
sive spikes (for an excitable array) were determined in par-
allel to periodogram calculations. To determine the transition
moment #; the output x(#) of the bistable oscillator (11) was
additionally filtered by a symmetrical trigger with thresholds
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AU= %0.5 to produce a dichotomous (two-state) signal x,(¢)
confined to the values *|x,,| only, where x,,=1. Similar fil-
tering was used for the output u(z) of the FHN system. MSR
was determined as (w)=2/(At), where <At)=($)2§‘i1m}-
and M is the number of transitions (spikes) during the simu-
lation time. The simulation time was always larger than 5000
periods T of the information component F(z).
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